$H₅IO₆/KI$: A New Combination Reagent for Iodination of Aromatic Amines, and Trimethylsilylation of Alcohols and Phenols through in situ Generation of Iodine under Mild Conditions

by Mohammad Ali Zolfigol*^a), Ardeshir Khazaei*^a), Eskandar Kolvari*^b), Nadiya Koukabi^a), Hamid Soltani^a), and Maryam Behjunia^a)

a) Faculty of Chemistry, Bu-Ali Sina University, P. O. Box 651783868, Hamedan, Iran b) Faculty of Science, Department of Chemistry, Semnan University, Semnan, Iran (e-mail: khazaei_1326@yahoo.com, zolfi@basu.ac.ir, kolvari@semnan.ac.ir)

A simple method for the *in situ* generation of iodine using $H₃IO₆/KI$ has been developed, and its application in silylation of OH group and iodination of aromatic amines is described.

Introduction. – So far, no report has been found in the literature on the *in situ* generation of the molecular iodine (I_2) by the reaction of iodide salts and orthoperiodic acid (H₅IO₆). Previously, I₂ has been used only as a reagent, but in recent years, I₂catalyzed reactions have grown in importance in organic synthesis $[1-8]$. Molecular iodine (I_2) is a versatile catalyst in organic synthesis, but it is highly corrosive, toxic, and sublimable, making its use somewhat unattractive; also there are some environmental hazards with respect to its handling. To overcome these disadvantages with I_2 , an attempt to introduce I_2 in situ in the reaction mixture seems to be practically useful.

During the last years, several new methods for in situ generation of bromine have been developed [9], but the number of protocols that are available to achieve molecular iodine in situ in the reaction mixture is limited $[10-16]$. In addition, most of these protocols suffer from disadvantages such as: complex and strong oxidizing agents, harsh reaction conditions, and formation of significant amount of waste. Therefore, the development of quick, inexpensive, widely applicable, and environmentally benign iodinating agents is still an active area of research.

Orthoperiodic acid (H_2IO_6) has attracted much interest owing to its potential as oxidant in organic reactions and transformations $[17-19]$. The use of $H₅IO₆$ has been known for a long time, and it has been widely employed in numerous and different organic reactions such as iodination [20 – 22] and deprotection [23]. This reagent has several advantages such as cost-effectiveness, non-toxicity, and the simple and clean workup of products.

Results and Discussion. – Against the background presented, we have carried out a detailed investigation aimed at the preparation of *in situ* generation of the I_2 by the reaction of KI and H_5IO_6 . We found that this system could play a dual role as a reagent system for iodination of aromatic amines and as a catalyst system in trimethylsilylation of alcohols and phenols. We assume that our method is general, simple, mild, rapid, inexpensive, and new.

^{© 2010} Verlag Helvetica Chimica Acta AG, Zürich

At the beginning of this work, we studied iodination of 4-phenylmorpholine as model compound with KI and $H₅IO₆$ in different solvents (*Scheme 1* and *Table 1*). Our investigation revealed that, amongst the various solvents, a mixture of CH_2Cl_2/H_2O 1:1 was the most effective, as a change of color was evident. Also the effective amount of $H₅IO₆$ acid on the reaction was studied, as shown in Table 2; 1.2 mmol of $H₅IO₆$ gives a high yield in a short reaction time.

Entry	Solvent	Time [min]	Yield $[\%]$ ^a)
1	CH_2Cl_2	120	
2	$CH2Cl2/H2O 1:1$	25	95
\mathfrak{Z}	MeCN	120	30
$\overline{4}$	MeCN/H ₂ O1:1	120	60
5	MeCH ₂ OH	120	68
6	THF/H ₂ O 1:1	120	80
	CHCl ₃	120	
8	Hexane	120	

Table 1. Comparison of Various Solvents for Iodination of 4-Phenylmorpholine Using H_5IO_6 and KI

^a) Refers to yields of isolated iodide on reaction of 1.2 mmol of $H₅IO₆$ and KI with 4-phenylmorpholine (1.0 mmol) in 10 ml of solvent or solvent mixture at room temperature.

2	$CH2Cl2/H2O 1:1$	25	כע
3	MeCN	120	30
$\overline{4}$	MeCN/H ₂ O1:1	120	60
5	MeCH ₂ OH	120	68
6	THF/H ₂ O 1:1	120	80
7	CHCl ₃	120	
8	Hexane	120	

Table 2. Effect of the Amount of H_5IO_6 on the Iodination Yield of 4-Phenylmorpholine (1.0 mmol)^a)

^a) Reaction conditions: KI (1.2 mmol), time: 25 min; solvent: 10 ml of CH_2Cl_2/H_2O 1:1; room temperature. b) Yield of the isolated iodide.

With a better understanding of the reaction variables, a series of aromatic amines were subjected to iodination with KI and $H₅IO₆$ at room temperature in CH₂Cl₂/H₂O 1 : 1 as a two phase system. In all of the reactions, we observed that mono-iodination took place regioselectively at the more active and less hindered position (Table 3). Even though H_5IO_6/KI is capable of oxidizing alcohol [24], it remains intact during the iodination of the aromatic nucleus (Entry 4).

Several attempts for mono-iodination of phenols were unsuccessful and led to mixtures. We have extended our reaction to a series of unactivated aromatic

Entry	Substrate	Product	Time [min]	Yield [%] ^b)
$\cal I$	NMe ₂	NMe ₂	40	90
$\sqrt{2}$	NEt ₂	NEt ₂	$70\,$	93
$\boldsymbol{\beta}$		O	$25\,$	95
$\ensuremath{\mathnormal{4}}$	OH HO	OH HO ^ʻ	$80\,$	88
$\sqrt{5}$	NMe ₂ Me [®]	NMe ₂ Me [®]	60	79
$\boldsymbol{\delta}$	C	Ω	60	98
$\boldsymbol{7}$		н	15	95
$\boldsymbol{8}$	CN	No reaction	120	
$\boldsymbol{9}$	Ö	No reaction	$120\,$	
$10\,$	ОH	Sluggish	15	

Table 3. Iodination of Aromatic Amines under Standard Conditions with H_5IO_6/KI in $CH_2Cl_2/H_2O 1$: 1 at Room Temperature^a)

^a) See procedure in *Exper. Part.* $\frac{b}{c}$) Yields refer to isolated products which were characterized by comparison of their spectroscopic and physical data with those of samples synthesized by reported procedures.

compounds as depicted in Table 3; these compounds remained unchanged even after 2 h $(Entries 8 and 9)$.

To extend the application of this method, we have employed H_5IO_6/KI catalytically for trimethylsilylation of alcohols and phenols. In this context, we have found that a combination of $H₅IO₆$ and a catalytic amount of KI generate in situ I₂ as an efficient catalyst for the trimethylsilylation of alcohols and phenols in the presence of 1,1,1,3,3,3 hexamethyldisilazane (HMDS; Scheme 2). To find the best system for the in situ generation of I_2 , we first studied a number of oxidizing agents in combination of KI for the trimethylsilylation of alcohols and phenols. As can be seen in Table 4, the best results were achieved with the H_5IO_6/KI system.

> Scheme 2 $R = OH \frac{H_5IO_6 / KI /HMDS}{CH_2Cl_2, 1}$ drop of H₂O, r.t. \rightarrow R-OSiMe₃

R = aliphatic, aromatic, benzylic

Table 4. Comparison between Various Oxidizing Agents/KI Systems for the Trimethlsilylation of Benzyl $Alcohol^a$

Entry	Oxidant	Time [h]	Yield $[%]$ ^b)
1	$Na_2S_2O_8$	2	
$\overline{2}$	$K_2S_2O_8$		
3	Sodium perborate		
$\overline{4}$	$NH4S2O8$		
5	H_5IO_6	immediate	100
6	$H_5IO_6^c$	8	
7	$-$ ^d)	immediate	100
8	$UHPe$)		
9	$DABCO/DNODPf$)		
10	$PVP/H_2O_2^g$		
11	Sodium percarbonate		

^a) Reaction conditions: Benzyl alcohol (1.0 mmol); oxidant (0.2 mmol); KI (0.2 mmol); 1 ml of moistened CH₂Cl₂. ^b) GC Yield. ^c) Without KI. ^d) Reaction conditions: Benzyl alcohol (1.0 mmol); I₂ (0.1 mmol) ; 1 ml of moistened CH₂Cl₂. $\text{e})$ UHP = Urea hydrogen peroxide. ^f) DABCO/DNODP: 1,4-Diazabicyclo[2.2.2]octane 1,4-bis(oxide)/bis(hydrogen peroxide). ^g) Polyvinylpyrrolidone/H₂O₂ (PVP/ H_2O_2).

In addition to KI, we also used catalytic amounts of KCl and KBr for silylations. The results are collected in Table 5. From these results, it is clear that KI is more efficient than KCl or KBr. Also as a model, we studied the trimethylsilylation of benzyl alcohol in different solvents (Table 6). Thus, a variety of alcohols and phenols were subjected to silylation reaction with a combination of $H₅IO₆$ and a catalytic amount of KI in the presence of HMDS. All protection reactions were performed under mild and homogeneous conditions, at room temperature, and with good-to-high yields. These reactions were carried out in CH₂Cl₂ moistened by one drop of H₂O (*Table 7*).

As shown in Table 7, in the cases of primary and secondary alcohols, the reactions were completed rapidly, and different types of highly hindered tertiary alcohols were successfully converted to the corresponding trimethylsilyloxy (TMSO) derivatives in

Table 5. Comparison of Various Types of MX for the Trimethylsilylation of Benzyl Alcohol^a)

Entry	MX	Time $[h]$	Yield $[%]^{b}$)
	ΚI	immediate	100
	KI^c		-
	KCl		-
	KBr		64

^a) Reaction condition: Benzyl alcohol (1.0 mmol); $H₅IO₆$ (0.2 mmol); MX (0.2 mmol), 1 ml of moistened CH_2Cl_2 . ^b) GC Yield. ^c) Solvent-free.

Table 6. Comparison of Various Solvents for Trimethylsilylation of Benzyl Alcohol Using I₂ Generated in situ from H_5IO_6 (0.2 mmol) in the Presence of a Catalytic Amount of KI (0.2 mmol)

Solvent	[ml/drop]	Time [h]	Yield $[\%]$ ^a)
MeCN	2/0	2.	33
MeCN/H ₂ O ^b	2/1		75
CH,Cl,	2/0		۰
CH_2Cl_2/H_2O^b)	5/1		70
CH_2Cl_2/H_2O^b)	2/1	immediate	100
$THF/H, O^b$	2/1	2.	50
$CHCl3/H2Ob)$	2/1		85
Hexane	2/0	2	
^a) GC Yields. $\frac{b}{c}$) Moistened solvent.			

almost quantitative yields at room temperature (*Table 7, Entries 18 – 20*). Moreover, no-side products were observed in these reactions.

The data in *Table 8* clearly show that different types of phenols were successfully converted to the corresponding TMSO derivatives in short reaction times and in almost quantitative yields. We observed that amines and thiols were not silylated under these conditions even after prolonged reaction times (Table 8, Entries 5 and 6).

For confirming this claim that I_2 is the actual catalyst, we conducted trimethylsilylation of PhCH₂OH with HMDS in the presence of catalytic amounts of $H₅IO₆$ (0.2 mmol) instead of the $H₅IO₆/KI$ system, no reaction occurred event after 8 h (Table 4, Entry 6), while PhCH₂OH was trimethylsilylated with HMDS in the presence of $H₅IO₆/KI$ or $I₂$, in very short reaction times (*Table 4, Entries* 5 and 7).

Conclusions. – A simple method for the *in situ* generation of molecular iodine from nontoxic and commercially available materials has been developed that could be utilized for a dual role: as a reagent system in iodination of aromatic amines, and as a catalyst system in trimethylsilylation of alcohols and phenols.

The authors acknowledge Bu-Ali Sina University Research Council (Grant Number 32-1716), Center of Excellence in Development of Chemical Methods (CEDCM), and National Foundation of Elites (BMN) for support of this work.

	Entry Substrate	Product		Time [min] Yield [%] ^a)
1 $\sqrt{2}$ \mathfrak{Z} $\overline{4}$ 5 6 7 $\boldsymbol{\mathcal{S}}$ $\boldsymbol{9}$	PhCH ₂ OH $4-MeO-C6H4CH2OH$ $4-CI-C6H4CH2OH$ $2,4$ - $\mathrm{(Cl)}_2\mathrm{C}_6\mathrm{H}_4\mathrm{CH}_2\mathrm{OH}$ $PhCH_2CH_2OH$ PhCH ₂ CH ₂ CH ₂ OH PhCH(OH)Ph $MeCH2)6CH2OH$ OH	PhCH ₂ OSiMe ₃ $4-MeO-C6H4CH2OSiMe3$ 4-Cl-C ₆ H ₄ CH ₂ OSiMe ₃ $2,4$ -(Cl) ₂ C ₆ H ₄ CH ₂ OSiMe ₃ PhCH ₂ CH ₂ OSiMe ₃ PhCH ₂ CH ₂ CH ₂ OSiMe ₃ PhCH(OSiMe ₃)Ph $Me(CH2)6CH2OSiMe3$ OTMS	immediate 95 immediate 93 immediate 97 immediate 94 3 immediate 95 2 immediate 90 12	90 92 91
10	OН	OTMS	15	85
11	OH	OTMS	immediate 83	
12	OH	OTMS	60	95
$13\,$	OH	OTMS	11	98
14	OH	OTMS	immediate 93	
15	OH	OTMS	immediate 94	
16	Η Ĥ. Ĥ HO,	Ĥ Ĥ Ĥ TMSO ^w	immediate 94	
17	OH	OTMS	9	91

Table 7. Trimethylsilylation of Alcohols (1 mmol) Using HMDS (1 mmol) Catalyzed with I_2 Generated in situ from H_5IO_6 (0.2 mmol) in the Presence of a Catalytic Amount of KI (0.2 mmol) in CH_2Cl_2 and One Drop of H₂O at Room Temperature

^a) Yields refer to isolated products which were characterized by comparison of their spectroscopic and physical data with those of samples synthesized by reported procedures.

Table 8. Trimethylsilylation of Phenols (1.0 mmol) Using HMDS (1.0 mmol) Catalyzed with I2 Generated in situ from H_5IO_6 (0.2 mmol) in the Presence of a Catalytic Amount of KI (0.2 mmol) in CH₂Cl₂ and One Drop of H₂O at Room Temperature

Entry	Substrate	Product ^a)	Time [min]	Yield $[%]^{b}$)
1	OH MeO	OSiMe ₃ MeO	immediate	96
$\overline{2}$	OH O_2N	OSiMe ₃ O_2N	immediate	97
\mathfrak{Z}	OH	OSiMe ₃	25	95
$\overline{4}$.OH	OSiMe ₃	immediate	92
5	NH ₂			no reaction
6	SH			no reaction

^a) All products were characterized by comparison of their spectral data (IR, ¹H-NMR) with those of authentic samples. b) Yields of isolated silyl ethers.

Experimental Part

Typical Procedure for Iodination of 4-Phenylmorpholine. To a soln. of 4-phenylmorpholine (1.0 mmol, 163 mg) in CH₂Cl₂ (5 ml) were added KI (1.2 mmol, 199 mg) and a soln. of H₅IO₆ (1.2 mmol, 273 mg) in H2O (5 ml), and the mixture was stirred vigorously for 15 min at r.t. After completion of reaction, which was indicated by TLC, the mixture was transferred to a separatory funnel, and a 10% aq. Na₂S₂O₃ soln. (25 ml) was added. The aq. fraction was extracted with CH₂Cl₂ (3×15 ml). The org. layer was dried (Na₂SO₄), and the solvent was removed by simple distillation to give a crude product (283 mg; 98%). Further purification was carried out by crystallization from cold hexane to afford the product (274 mg, 95 %). M.p. $128-130^{\circ}$. Satisfactory anal. and spectroscopic properties.

General Procedure for Trimethylsilylation of Alcohols and Phenols. The alcohol or phenol (1.0 mmol) was added to a mixture of $H₅IO₆$ (0.2 mmol) and KI (0.2 mmol) in CH₂Cl₂ (1 ml), and one drop of H₂O. Then, HMDS (1.0 mmol in 1 ml CH₂Cl₂) was added dropwise to this mixture within 5 min. The mixture was stirred vigorously at r.t. for the specified time (Tables 7 and 8). After completion of the reaction (TLC), the mixture was filtered, and the solids were washed with CH_2Cl_2 (5 ml). Powdered $Na₂SO₃$ (12.0 mmol) was added, the mixture was stirred for additional 5 min, and the resulting mixture was filtered. Finally, H₂O (10 ml) was added to destroy the extra amount of HMDS, the org. layer was separated, and the filtrate was dried (Na_3SO_4) . Evaporation of the solvent under reduced pressure gave the almost pure product.

REFERENCES

- [1] P. Phukan, J. Org. Chem. 2004, 69, 4005.
- [2] H. Firouzabadi, N. Iranpoor, H. Hazarkhani, J. Org. Chem. 2001, 66, 7527.
- [3] B. Das, N. Chowdhury, K. Damodar, Tetrahedron Lett. 2007, 48, 2867.
- [4] H. Togo, S. Iida, Synlett **2006**, 2159.
- [5] J. S. Yadav, B. V. Subba Reddy, U. V. Subba Reddy, A. D. Krishna, Tetrahedron Lett. 2007, 48, 5243.
- [6] T. Ando, D. Kano, S. Minakata, I. Ryu, M. Komatsu, Tetrahedron 1998, 54, 13485.
- [7] B. Karimi, B. Golshani, J. Org. Chem. 2000, 65, 7228.
- [8] O. V. Branytska, R. Neumann, J. Org. Chem. 2003, 68, 9510.
- [9] M. Eissen, D. Lenoir, Chem.–Eur. J. 2008, 14, 9830.
- [10] A. D. Bailey, S. M. Cherney, P. W. Anzalone, E. D. Anderson, J. J. Ernat, R. S. Mohan, Synlett 2006, 215.
- [11] D. A. Gorlushko, V. D. Filimonov, N. I. Semenishcheva, E. A. Krasnokutskaya, A. N. Tretyakov, B. S. Go, H. Y. Hwang, E. H. Cha, K.-W. Chi, Russ. J. Org. Chem. 2008, 44, 1243.
- [12] H. Firouzabadi, N. Iranpoor, M. Shiri, Tetrahedron Lett. 2003, 44, 8781.
- [13] E. A. Krasnokutskaya, N. I. Semenischeva, V. D. Filimonov, P. Knochel, Synthesis 2007, 81.
- [14] J. Iskra, S. Stavber, M. Zupan, Synthesis 2004, 1869.
- [15] A. R. Pourali, M. Ghanei, Chin. J. Chem. 2006, 24, 1077.
- [16] L. Lista, A. Pezzella, A. Napolitano, M. d'Ischia, Tetrahedron 2008, 64, 234.
- [17] S. S. Kim, K. Nehru, Synlett 2002, 616.
- [18] S. S. Kim, K. Nehru, S. S. Kim, D. W. Kim, H. C. Jung, Synthesis 2002, 2484.
- [19] S. S. Kim, I. Trushkov, S. K. Sar, Bull. Korean Chem. Soc. 2002, 23, 1331.
- [20] B. A. Hathaway, K. L. White, M. E. McGill, Synth. Commun. 2007, 37, 3855.
- [21] M. Sosnowski, L. Skulski, Molecules 2000, 10, 401.
- [22] M. Sosnowski, L. Skulski, K. Wolowik, Molecules 2004, 9, 617.
- [23] Z. Li, R.-B. Ding, Y.-L. Xing, S.-Y. Shi, Synth. Commun. 2005, 35, 2515.
- [24] M. A. Zolfigol, F. Shirini, G. Chehardoli, E. Kolvari, J. Mol. Catal. A: Chem. 2007, 265, 272.

Received July 11, 2009